

mathtoriyama@gmail.com Chicago, USA

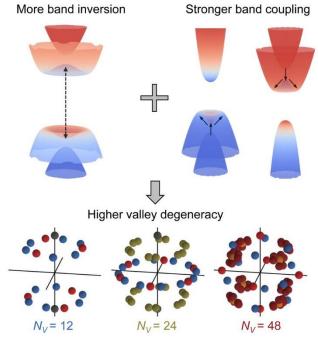
Michael Y. Toriyama

Quick Rundown

- ★ Skilled in computational materials science, particularly for energy materials
- ★ Published 11 peer-reviewed papers as first author or co-first author
- ★ Recipient of the DOE Computational Science Graduate Fellowship and Barry Goldwater Scholarship

Education

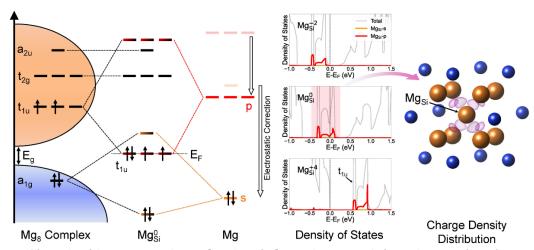
09/2019 - Present **Northwestern University** Ph. D. Candidate, Materials Science and Engineering University of Illinois at Urbana-Champaign 09/2015 - 05/2019Bachelor of Science, Materials Science and Engineering (High Honors) Bachelor of Science, Applied Mathematics (Magna Cum Laude)


Minor, Physics

Research Experience

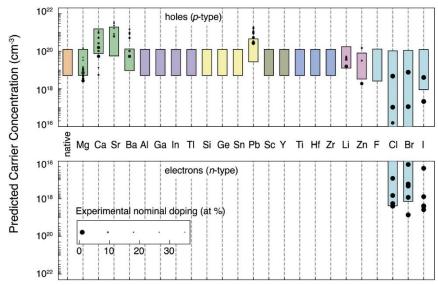
Graduate Student Researcher Northwestern University Advisors: Prof. G. Jeffrey Snyder and Prof. Prashun Gorai	09/2019 - Present
Students Pushing Innovation Intern National Center for Supercomputing Applications Advisors: Prof. Elif Ertekin and Dr. Lídia Carvalho Gomes	08/2018 - 08/2019
Undergraduate Researcher Radiation Surface Science and Engineering Laboratory Advisors: Prof. Jean Paul Allain and Dr. Michael A. Lively	02/2016 - 08/2019
Future Leaders of Advanced Materials Intern University of California, Santa Barbara Advisors: Prof. Anton Van der Ven and Dr. Jonas L. Kaufman	06/2018 - 08/2018
Undergraduate Intern Illinois Geometry Laboratory Advisors: Prof. Ivan Contreras and Dr. Sarah Loeb	08/2016 - 05/2018
DOE SULI Intern Argonne National Laboratory Advisors: Dr. Maria K.Y. Chan and Dr. Fatih G. Sen	06/2017 – 08/2017

Publications


- 1. **M.Y. Toriyama**, A.N. Carranco, G.J. Snyder, and P. Gorai, Material Descriptors for Thermoelectric Performance of Narrow-gap Semiconductors and Semimetals, *Mater. Horiz.*, Accepted (2023).
- 2. **M.Y. Toriyama** and G.J. Snyder, Band Inversion-Driven Warping and High Valley Degeneracy, *Cell Rep. Phys. Sci.*, 4, 101392 (2023).

Band inversion-driven warping and high valley degeneracy in topological insulators.

- 3. L.E. Borgsmiller, Q. Li, **M.Y. Toriyama**, and G.J. Snyder, New Zintl Phase Yb₁₀MgSb₉ with High Thermoelectric Performance, *Adv. Energy Mater.*, 2300393 (2023).
- 4. E. Isotta, **M.Y. Toriyama**, A.H. Adekoya, R. Shupp, G.J. Snyder, and A. Zevalkink, Effect of Sn Oxides on the Thermal Conductivity of Polycrystalline SnSe, *Mater. Today Phys.*, 31, 100967 (2023).
- 5. **M.Y. Toriyama**, J. Qu, L.C. Gomes, and E. Ertekin, VTAnDeM: A Python Toolkit for Simultaneously Visualizing Phase Stability, Defect Energetics, and Carrier Concentrations of Materials, *Comp. Phys. Commun.*, 287, 108691 (2023).
- 6. **M.Y. Toriyama**, D. Cheikh, S.K. Bux, G.J. Snyder, and P. Gorai, Y₂Te₃: A New n-Type Thermoelectric Material, *ACS Appl. Mater. Interfaces*, 14, 43517 (2022).
- 7. H. Jang, **M.Y. Toriyama**, S. Abbey, B. Frimpong, J.P. Male, G.J. Snyder, Y.S. Jung, and M. Oh, Suppressing Charged Cation Antisites via Se Vapor Annealing Enables p-Type Dopability in AgBiSe₂-SnSe Thermoelectrics, *Adv. Mater.*, 2204132 (2022).


8. **M.Y. Toriyama**, M.K. Brod, and G.J. Snyder, Chemical Interpretation of Charged Point Defects in Semiconductors: A Case Study of Mg₂Si, *ChemNanoMat*, 8, e202200222 (2022).

Chemical interpretation of point defects in materials using molecular orbital theory and first-principles calculations.

- 9. S. Anand, **M.Y. Toriyama**, C. Wolverton, S.M. Haile, and G.J. Snyder, A Convergent Understanding of Charged Defects, *Acc. Mater. Res.*, 3, 685 (2022).
- 10. **M.Y. Toriyama**, A.M. Ganose, M. Dylla, S. Anand, J. Park, M.K. Brod, J.M. Munro, K.A. Persson, A. Jain, and G.J. Snyder, How to Analyse a Density of States, *Mater. Today Electron.*, 1, 100002 (2022).
- 11. **M.Y. Toriyama**, M.K. Brod, L.C. Gomes, F.A. Bipasha, B.A. Assaf, E. Ertekin, and G.J. Snyder, Tuning High Valley Degeneracy in Rock-Salt IV-VI Compounds with Band Inversion, *J. Mater. Chem. A*, 10, 1588 (2022).
- 12. Y. Liu*, **M.Y. Toriyama***, Z. Cai, M. Zhao, F. Liu, G.J. Snyder, Finding the Order in Complexity: The Electronic Structure of 14-1-11 Zintl Compounds, *Appl. Phys. Lett.*, 119, 213902 (2021).
- 13. J. Qu, C.E. Porter, L.C. Gomes, J.M. Adamczyk, **M.Y. Toriyama**, B.R. Ortiz, E.S. Toberer, E. Ertekin, Controlling Thermoelectric Transport via Native Defects in the Diamond-Like Semiconductors Cu₂HgGeTe₄ and Hg₂GeTe₄, *J. Mater. Chem. A*, 9, 26189 (2021).
- 14. M. Wood*, **M.Y. Toriyama***, S. Dugar*, J. Male, S. Anand, V. Stevanovic, and G.J. Snyder, Phase Boundary Mapping of Tin-Doped ZnSb Reveals Thermodynamic Route to High Thermoelectric Efficiency, *Adv. Energy Mater.*, 11, 2100181 (2021).
- 15. X. Zhang, **M.Y. Toriyama**, J.P. Male, Z. Feng, S. Guo, T. Jia, Z. Ti, G.J. Snyder, and Y. Zhang, First Principles Investigation of Intrinsic and Na Defects in XTe (X = Ca, Sr, Ba) Nanostructured PbTe, *Mater. Today Phys.*, 19, 100415 (2021).
- 16. N.A. Pieczulewski, M. Wood, **M.Y. Toriyama**, J.P. Male, K.J. Griffith, and G.J. Snyder, Possibility of Interstitial Na as Electron Donor in Yb₁₄MgSb₁₁, *MRS Comm.*, 11, 226 (2021).

17. **M.Y. Toriyama**, J. Qu, G.J. Snyder, and P. Gorai, Defect Chemistry and Doping of BiCuSeO, *J. Mater. Chem. A*, 9, 20685 (2021).

Carrier concentrations in BiCuSeO thermoelectrics, predicted using first-principles methods.

- 18. R. Orenstein, J.P. Male, **M.Y. Toriyama**, S. Anand, and G.J. Snyder, Using Phase Boundary Mapping to Resolve Discrepancies in the Mg₂Si-Mg₂Sn Miscibility Gap, *J. Mater. Chem. A*, 9, 7208 (2021).
- 19. M.K. Brod, **M.Y. Toriyama**, and G.J. Snyder, Orbital Chemistry that Leads to High Valley Degeneracy in PbTe, *Chem. Mater.*, 32, 9771-9779 (2020).
- 20. I.C. Contreras, **M. Toriyama**, and C. Yu, Gluing of Graph Laplacians and Their Spectra, *Linear Multilinear A*, 68, 710 (2020).
- 21. M.A. Lively, B. Holybee, **M. Toriyama**, S. Facsko, and J.P. Allain, Nonlinear Compositional and Morphological Evolution of Ion-Irradiated GaSb Prior to Nanostructure to Formation, *Sci. Rep.*, 10, 1 (2020).
- 22. A.K.M. Kanakkithodi, **M. Toriyama**, F.G. Sen, M.J. Davis, and M. Chan, Machine Learned Impurity Level Prediction for Semiconductors: the Example of Cd-Based Chalcogenides, *npj Comput. Mater.*, 6, 1 (2020).
- 23. **M. Toriyama**, J. Kaufman, and A. Van der Ven, Potassium Ordering and Structural Phase Stability in Layered K_xCoO₂, *ACS Appl. Energy Mater.*, 2, 2629 (2019).
- 24. M.A. Lively, B. Holybee, **M. Toriyama**, and J.P. Allain, Massive-Scale Molecular Dynamics of In-Irradiated III-V Compound Semiconductors at the Onset of Nanopatterning, *Nucl. Instrum. Meth. B*, 409, 282 (2017).

Conference Talks

- 1. Material Descriptors to Predict Thermoelectric Performance of Narrow-Gap Semiconductors and Semimetals, International Conference on Thermoelectrics, Seattle, WA (June 23, 2023).
- 2. Band Inversion-Driven Warping for Achieving High Valley Degeneracy, International Conference on Thermoelectrics, Seattle, WA (June 22, 2023).
- 3. Band Inversion-Driven High Valley Degeneracy, MRS Fall Meeting, Boston, MA (December 1, 2022).
- 4. Material Descriptors to Search for Low-Temperature Thermoelectric Materials, MRS Fall Meeting, Boston, MA (November 28, 2022).
- 5. Band Inversion-Driven High Valley Degeneracy, Virtual Conference on Thermoelectrics (July 20, 2022).
- 6. Chemically Tuning Non-Parabolic Electronic Structures in Rock-Salt IV-VI Compounds, MRS Fall Meeting, Boston, MA (November 29, 2021).
- 7. Defect Chemistry and Doping of BiCuSeO, Virtual Conference on Thermoelectrics (July 20, 2021).
- 8. Chemistry of Point Defects: Case Study of Mg_{Si} in Mg₂Si, Virtual Conference on Thermoelectrics (July 23, 2020).
- 9. Graph Theory-Based Gluing Formulae for Electronic Structure Calculations, SRC TECHCON 2018, Austin, TX (September 16-19, 2018).
- 10. Computational Studies of Ion Irradiation Effects on GaSb Surfaces, Tau Beta Pi Research Symposium, University of Illinois at Urbana-Champaign (April 17, 2018).
- 11. Gluing Graphs and Electronic Structures of Matter, Undergraduate Mathematics Symposium, University of Illinois at Chicago (November 18, 2017).

Professional Experience

Conference Organizer

2021, 2022

Virtual Conference on Thermoelectrics

Teaching Assistant, Northwestern University *MAT_SCI 351-2 (Intro Physics of Materials)*

Winter 2022, 2023

Teaching Assistant, UIUC *MATH 286 (Differential Equations)*

Fall 2018

Mentoring

Master's Students

♦ Estefanny Ruiz

Junjie Wang Present Northwestern University Project: Enhancing Thermoelectric Performance with Magnetic Fields 2021-2022 Jordan Miller Northwestern University Project: Defect Chemistry of Distorted Defects in MgO **Undergraduate Students Louis Wong** 2023 Northwestern University Project: Defect Chemistry of SrTiO₃ and Ceria Using MO Theory **Andrew Borland** 2022 Northwestern University Project: Computational Discovery of Oxychalcogenides Using ML **Adam Carranco** 2021-2022 MURF (Colorado School of Mines) Project: Discovery of New Low-Temperature Thermoelectric Materials **♦** Alessandro Pereyra Summer 2020 MRSEC REU Project: Analysis of Thermoelectrics Data Summer 2020 **Johnny Tran** MRSEC REU Project: Analysis of Thermoelectrics Data **High School Students Huzaifa Saifee** Summer 2023 Troy Tech Senior internship (Troy High School) Project: Web Development for Thermoelectric Transport Analysis

High School Summer Research Program (Urbana High School)

Project: Phase Stability Analysis for Thermoelectrics

Summer 2019

A Honors and Awards

DOE Computational Science Graduate Fellowship Hilliard Symposium (2nd Place)	2019-2023 2023
Dean's List	2015-2019
TECHCON Undergraduate Poster Award (3rd Place)	2018
Barry Goldwater Scholarship	2018
Cullen W. Parmelee Scholarship	2016, 2018
Wert Scholarship	2017
Illinois Geometry Laboratory Research Award (1st Place)	2017
Alfred W. Allen Award	2016
Engineering Open House Best Freshman Exhibit (2nd Place)	2016